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Abstract: Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great
potential as human in vitro models for studying heart disease and for drug safety screening. Never-
theless, their associated immaturity relative to the adult myocardium limits their utility in cardiac
research. In this study, we describe the development of a platform for generating three-dimensional
engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechani-
cal and electrical stimulation. The modular and versatile EHT platform presented here allows for
the formation of three tissues per well in a 12-well plate format, resulting in 36 tissues per plate.
We compared the functional performance of EHTs and their histology in three different media and
demonstrated that tissues cultured and maintained in maturation medium, containing triiodothy-
ronine (T3), dexamethasone, and insulin-like growth factor-1 (TDI), resulted in a higher force of
contraction, sarcomeric organization and alignment, and a higher and lower inotropic response to
isoproterenol and nifedipine, respectively. Moreover, in this study, we highlight the importance
of integrating a serum-free maturation medium in the EHT platform, making it a suitable tool for
cardiovascular research, disease modeling, and preclinical drug testing.

Keywords: versatile platform; engineered heart tissues; serum-free; contractile force; cardiac performance;
hPSC-CMs

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death globally and its prevalence
is expected to continue to rise with the increase of life expectancy [1]. Although large efforts
have been made in developing new drugs for the treatment of CVD, translation from basic
research to the release of new compounds on the market has diminished greatly in the past
two decades due to high clinical trial failure rates [2]. Results from animal models could not
be reliably extrapolated to the (patho-)physiology of the human heart and in vitro models
using primary cardiomyocytes (CMs) or cell lines do not successfully recapitulate cardiac
disease in humans, which underlines the urgent need to create innovative human-based
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cardiovascular models in order to improve the success rate of discovering new therapeutic
approaches. Recent advances in the efficient differentiation of human pluripotent stem
cell-derived cardiomyocytes (hPSC-CMs) and other key cardiac cell-types facilitated their
application in the development of complex multicellular human pre-clinical cardiovas-
cular models, with a higher resemblance of the human heart and the patient’s disease
phenotype [3–5].

However, hPSC-CMs are currently limited by their relatively immature phenotype
in comparison to human adult CMs. Different studies have shown several approaches to
enhance hPSC-CMs maturation in vitro based on key physiological properties from in vivo
cardiac development, including the modulation of substrate stiffness; electrical, mechanical,
and biochemical stimulation; and three-dimensional (3D) culturing or cell–cell interactions
with additional cardiac cell types [6–8].

Over the last decades, 3D engineered heart tissues (EHTs) from hPSC-CMs have
become a promising and highly advanced model for studying cardiac disease since EHT-
CMs exhibit a higher degree of maturation based on various features, including a more
defined cellular organization (e.g., sarcomeric assembly and mitochondrial maturation),
an expression pattern of maturation-related genes, and an enhanced contractile function,
when compared to two-dimensional (2D)-CMs [9–11].

However, most EHT protocols rely on undefined culture medium containing serum
to generate stable tissues and ensure survival during CM maturation [12,13]. Despite the
presence of numerous beneficial components in serum, its undefined composition, batch-to-
batch variability, and possible interference with other factors and compounds compromise
the standardized formation of defined cardiac tissues and reliable testing [14]. Moreover,
the well-known CM hypertrophy-inducing effect of serum can alter the interpretation of
experiments investigating disease phenotype or drug responses [15]. Therefore, control
over medium composition with defined formulations that support CM maturation might
promote optimal cardiomyocyte function and robust readouts. In this regard, we have
previously shown that stimulation with biochemical factors with putative roles in CM
function, such as the combination of the triiodothyronine hormone (T3), dexamethasone
(D), and insulin-like growth factor 1 (IGF-1; TDI), in a refined maturation culture medium
improves maturation in monolayer cultures with hPSC-CMs [16]. We hypothesize that
using these factors in hPSC-derived cardiomyocytes in a 3D configuration, will induce an
increase in contractile properties and responses to inotropic agents.

In this study, we developed a versatile platform for the generation and functional
analysis of 3D EHTs using hPSC-CMs, suitable for inverted microscopy and requiring
a lower number of cells when compared to previously reported conventional EHT plat-
forms [17,18]. We evaluated the formation, organization, and functional performance of
EHTs conditioned in various media, including serum-free fully defined maturation medium
containing TDI. We demonstrate the importance of biochemical stimulation in enhancing
functional properties and the structural morphology of hPSC-CMs in vitro, and establish a
serum-free platform which enables standardized drug screening and modeling of cardiac
disease in 3D human cardiac tissues (Figure S1).

2. Materials and Methods
2.1. HPSC Culture and Generation of hPSC-CMs

This study was performed using a human-induced pluripotent stem cell (hiPSC;
LUMC0020iCTRL-06) line and the previously generated double-reporter human embryonic
stem cell (hESC) line (HES3) carrying both the Green Fluorescent Protein (GFP) at the
NKX2.5 genomic locus [19] and mRubyII fused to the cardiac sarcomeric protein α-actinin
(ACTN2; DRRAGN [20]). Undifferentiated hPSCs were maintained in Essential 8 (E8)
medium (Thermo Fisher, Lelystad, The Netherlands, A1517001) on vitronectin (Thermo
Fisher, A31804)-coated 6-well plates. Cardiac differentiation was induced as described
previously [16]. Briefly, on day 1, hPSCs were seeded at a density of 15–25 × 103 cells
per cm2 on Matrigel (83 µg protein/mL; Corning, Tewksbury, MA, USA, 354230)-coated
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6-well plates in E8 medium. After 24 h (day 0 (D0)), mesodermal differentiation was in-
duced by addition of Activin-A (20 ng/mL, Miltenyi, Leiden, The Netherlands, 130–115-010),
BMP4 (20 ng/mL, R&D systems, Minneapolis, MN, USA, 314-BP/CF), and Wnt activator
CHIR99021 (1.5 µmol/L, Axon Medchem, Groningen, The Netherlands, 1386) in BPEL
medium [21]. At day 3 (D3), cells were refreshed with BPEL containing WNT inhibitor
XAV939 (5 µmol/L, R&D Systems 3748) and Matrigel (41.3 µg protein/mL). Cells were
refreshed with BPEL on day 7 (D7) and 10 (D10) of the differentiation (Figure 1A).
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10 (D10)). After 21 days of tissue formation (T21), tissues were kept for histological analysis. HPSCs, 
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supported one polydimethylsiloxane (PDMS) piece containing 6 cantilevers.  

Figure 1. Representative differentiation to CMs from hPSCs and experimental flow chart. (A) CM
differentiation steps at day 0 (D0), 3 (D3), 7 (D7), 10 (D10), and 14 (D14). (B) Medium switch on
fully differentiated CMs at day 14 to BPEL, DMEM, or Maturation Medium (MM) until day 17 (D17).
(C) At day 17, flow cytometry (FC) was performed in CMs from the three different groups, followed
by tissue formation in the corresponding media with or without horse serum (HS and SF, respectively).
(D) Following contraction analysis carried at day 5, 11, 15, and 20 after tissue formation (T5, T11, T15,
and T20). Drug tests were performed at the best timepoint of force of contraction assessed (day 10
(D10)). After 21 days of tissue formation (T21), tissues were kept for histological analysis. HPSCs,
human pluripotent stem cells; MES, mesoderm; CPCs, cardiac progenitor cells; CMs, cardiomyocytes;
MG, Matrigel; HS, horse serum; and SF, serum-free.

2.2. Fabrication of Engineered Heart Tissues (EHT) Platform

The EHT platform has 12 holders and each one of them are made of poly(methyl
methacrylate; PMMA), designed in SolidWorks 2018 and fabricated by the Computer Nu-
merical Control (CNC) micro-milling machine (Datron Neo, Mühltal, Germany; Figure 2A).
The milling process was performed in two phases: first, the top part of the holder was
engraved and milled, which was followed by milling of the bottom part to fit in a well of a
CELLSTAR® 12-well cell culture multiwell plate (GreinerBioOne, Alphen aan den Rijn, The
Netherlands, cat no. 665180). The depth of each holder was made considering a working
volume of 2 mL per well (Figure S2). Each holder supported one polydimethylsiloxane
(PDMS) piece containing 6 cantilevers.
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These PDMS pieces with three parallel pairs of cantilevers were made by mold-
casting Sylgard 184 (1:10 v/v ratio, Sigma-Aldrich, St. Louis, MO, USA) into custom-made
negative Teflon molds that were designed and fabricated by the CNC micro-milling machine
(Figure 2B). Alignment features were included in the design to facilitate a proper fit into the
PMMA holders. For the fabrication, the PDMS was casted into the Teflon mold and placed
in a vacuum chamber to eliminate bubbles for 45 min and subsequently incubated at 60 ◦C
inside an oven to cure the PDMS overnight. In order to optically track the position of the
cantilevers, a drop of the mixture of PDMS with 13% (w/w) black carbon (Vulcan XC 72R)
was used to stain the top of each one of the six transparent cantilevers. Immediately after,
the whole PDMS-part was placed back into the oven at 60 ◦C for 2 h to cure (Figure 2C).
To prevent the EHTs from sliding off the pillars when suspended upside-down, a disc of
transparent PDMS of 1 mm of the diameter was made on the end of the cantilever using
a custom-made mold from PMMA and cured inside an oven at 60 ◦C for 2 h (Figure 2D).
Each cantilever measures 3 mm in length with a 100 µm thick disc on top connected to a
PDMS base of 3 mm (Figure 2E).

With this platform, a total of 36 EHTs were made on a 12-well plate format using
12 holders and 12 PDMS-parts, which means 3 EHTs per well (Figures 2F and S3).

2.3. Conditioning of CMs and EHT Formation

At day 14 of differentiation (D14), contracting CMs in monolayers were conditioned
with either (1) DMEM culture medium (consisting of DMEM (Biochrom/Sigma-Aldrich,
Cambridge, UK, F0415) supplemented with 1% penicillin/streptomycin (Gibco, Lelystad,
The Netherlands, 15070063) and 10 µg/mL insulin (Sigma-Aldrich, I9278)), (2) maturation
medium (MM; composed of DMEM (Sigma, St. Louis, MO, USA, D5030), 15 mM glucose,
0.5 mM sodium pyruvate, 0.19 mM sodium hydroxybutyrate, 0.5 mM L-carnitine, 1 mM
creatine, 5 mM taurine, phenol red (0.011 g/L), 1X Trace elements (A, B, and C; Corning),
1X chemically defined lipids (Life Technologies, Waltham, MA, USA), 2 mM Glutamax,
400 µM α-thioglycerol, 0.1X ITS-X, 50 µg/mL AA-2P, 0.5% Pen-Strep, 3.5 g/L sodium
bicarbonate, 100 nM T3, 100 ng/mL Long R3 IGF-1, and 1 µM dexamethasone, as described
in [16]) or (3) control medium (BPEL; Figure 1B). After 3 days (day 17 (D17)), cardiac
monolayers were dissociated with TrypLE 10X (ThermoFisher, A1217702) for 10 min. CM
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populations were quantified with flow cytometry (FC) either for cTnT+ cells (for hiPSC-
CMs) or GFP+/mRubyII+ (for hESC-CMs). CM differentiation efficiencies from 60% or
higher were considered for tissue formation (Figure 1C).

The EHT formation protocol was adapted from Breckwoldt et al. [22]. A set of 3 tissues
(one well of the 12-well plate) was made from CMs of each culture condition by counting
and resuspending to a final concentration of 23.6 × 106 cells/mL in the corresponding
medium with 10% horse serum (HS; Thermofisher, 26050088) or without (serum-free,
SF). Next, an extracellular matrix (ECM) mixture consisting of 2X medium (DMEM, MM,
or BPEL), fibrinogen (final concentration of 2 mg/mL, Sigma-Aldrich F8630), Matrigel
(final concentration of 1 mg/mL), and aprotinin (final concentration of 2.5 µg/mL, Sigma-
Aldrich, A1153) was reconstituted on ice and added to the resuspended cells to get a final
cell concentration of 16.3 × 106 cells/mL. Next, 0.6 U/mL of thrombin (Sigma, T7513)
was added to the cells + ECM mixture. Quickly after mixing, 15 µL of the final mix
(2.45 × 105 cells) was added to the tissue slots. The tissue slots were made using Teflon
tissue-shaped molds that were designed and fabricated by a CNC micro-milling machine
and were supplemented with 1 mL of the mix of 2X of the specific cell culture condition as
well as with 20% (w/v) of gelatine from porcine skin (G1890-1006) per well. The well plate
was placed at 4 ◦C for 4 h prior to the experiment. Subsequently, the assembled Teflon
tissue-shaped molds were removed from the holder (Figure 3A,B). Next, the PDMS part,
already assembled in the holder, was placed in the well and the constructs were left at
room temperature (RT) for 10 min for fibrinogen polymerization (Figure 3C). Next, 1 mL
of the corresponding cell culture medium was added to each well. The EHTs were then
maintained at 37 ◦C and 5% CO2 in a humidified cell culture incubator and refreshed the
next day. Refreshments were done every 2 or 3 days and after contraction measurements
(Figure 1D).
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2.4. Functional Analysis

To assess compaction of the tissues over time, the surface area of the whole tissue
was traced using ImageJ. Next, early-stage compaction was determined by calculating
the area of each tissue after 5 days of tissue formation (T5) as a fraction of the seeding
surface area at day 0 of tissue formation (T0; 11 mm2). Similarly, late-stage compaction
was determined by calculating the fractional surface area of each tissue after day 11, 15,
and 20 of tissue formation (T11, T15, and T20, respectively) normalized to the T5 area
of the same tissue. EHT formation was considered successful when cardiac tissues were
homogeneously distributed around the cantilevers without tissue rupture at any timepoint.
The success rate was thus defined by the percentage of successful tissues out of the total
number of tissues produced.

Force of contraction was measured on day 5, 11, 15, and 20 after tissue formation for
a period of 10 s per tissue. Responses to drugs were assessed at day 10. For a positive
inotropic response, isoproterenol (Sigma, I5627) was administrated at 3 nM and force
of contraction was measured after 5 min of incubation. Gain of force and velocity were
assessed with respect to the basal condition (0 nM). Similarly, negative inotropic effects
were determined with increasing concentrations of nifedipine (Sigma, N7634; 0–100 µM).
After 5 min of each dose’s administration, the tissues were recorded.

For all measurements, two platinum electrodes (Advent Research Materials) connected
to a custom-made pacing device were placed perpendicular to the tissues, approximately
20 mm apart inside of the well. The EHTs were electrically paced at 1 Hz (10 ms biphasic
pulses, 4–5 V/cm) while being maintained at 37 ◦C and 5% CO2. Image acquisition was
done at 100 fps with 2× magnification. To assess the functional parameters, cantilever
deflection in the EHTs was calculated by a custom MatLab-based (version 2020) analysis
software developed by our group. To calculate the deflection of the cantilevers over time,
the software measured the distance between the black cantilever tops in each frame and
compared it with the known initial distance. The contraction force of the EHTs was assessed
using the elastic beam bending equation [23].

F =
3πER4

2a2(3L− a)
δ

where F is the contraction force of the EHT; E, R, and L represent Young’s modulus, the
radius, and the length of the PDMS cantilever; a is the height of the tissue on the cantilever
from the base; and δ is the measured distance between cantilevers.

2.5. Immunostaining, Histology, and Imaging

At day 21, EHTs cultured with different treatments were fixed in 4% paraformaldehyde
(PFA) in phosphate-buffered saline (PBS) for 30 min at RT for the sectioning procedure or
1 h for whole-mount staining.

For whole-mount staining, EHTs after fixation were washed with 0.3% Triton-X 100
(Sigma-Aldrich; 3 × 20 min), blocked for non-specific binding with 3% BSA, 0.3% Triton-X
100, and 0.1% Tween in PBS overnight at 4 ◦C. Primary antibody anti-cardiac troponin T
(1:400; Invitrogen, MA5-12960), anti-connexin-43 (1:200; Sigma-Aldrich, C6219), or anti-
cardiac troponin I3 (1:800; Abcam, ab10231) were then incubated for 2 days at 4 ◦C. Then,
tissues were washed with 0.3% Triton-X 100 (3 × 20 min) and secondary antibody Goat-
anti-Mouse IgG Alexa Fluor 647 (1:500; Invitrogen, A21235), and/or Goat-anti Rabbit IgG
Alexa Fluor 488 (1:500; Invitrogen, A27034) and DAPI were added for 24 h at 4 ◦C. After
three washes with PBS, tissues were mounted on a microscope slide for confocal imaging
with a Zeiss LSM 880 microscope.

For cryo and paraffin sections, after fixation, EHTs were extensively washed in PBS
and either cryoprotected by overnight incubation in 30% sucrose; embedded in CryoMatrix
Gel (Thermo Scientific, 6769006) and 12 µm sectioned in an MNT (SLEE Medical) cryostat;
or dehydrated in ethanol, cleared in butanol, embedded in Histosec (Merk), and 10 µm
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sectioned in a Leica microtome. Immunohistochemical characterization of CMs in cryosec-
tions was performed using a Mouse monoclonal anti-alpha-actinin (ACTN2) antibody
(Sigma, A7811). Tissue sections were permeabilized with PBS containing 0.1% Triton-X 100
(Sigma-Aldrich) for 8 min and blocked for 1 h with PBS containing both 1% (vol/vol) BSA
and 5% (vol/vol) goat serum. Sections were incubated with the primary antibody α-actinin
(1:800) overnight at 4 ◦C. Then, the samples were washed in PBS solution (3 × 5 min) and
incubated with the secondary antibody Goat-anti-Mouse IgG Alexa Fluor 647 (Invitrogen,
A21235) or Goat-anti-Mouse IgG Alexa Fluor 488 (Invitrogen, A11001) for 1 h at room
temperature. After three washing steps with PBS (20 min each), tissues were counterstained
with DAPI (4′,6-diamidine-2-phenylidole-dihydrochloride; Thermo Scientific). Finally,
the slides were mounted with ProLong Gold antifade with DAPI (Life Technologies) and
analyzed under a Zeiss LSM 880 laser confocal microscope.

Immunostaining on paraffin sections was carried out by blocking non-specific binding
sites with SBT (TPBS1X, Goat Serum, Albumin, and Triton X-100) and incubating the slides
in the primary cardiac troponin-I (cTnT1) antibody (1/100 diluted in SBT, Santa Cruz
sc-133117) overnight at 4 ◦C. Then, the slides were washed in PBS solution (3 × 5 min)
and incubated for 2 h at RT in Cy5 AffiniPure Donkey-anti-Mouse immunoglobulin G
(IgG; 1/200 diluted in PBS, Jackson 715-175-150). Nuclear DAPI counterstaining was
performed. Finally, the slides were mounted and analyzed under a LEICA SP5 laser
confocal microscope.

2.6. Gene Expression

For RT-qPCR, RNA from hESC-EHTs in each media at day 21 was purified using the
Nucleo Spin RNA (Macherey-Nagel) according to the manufacturer’s protocol and reverse-
transcribed to cDNA using the iScript cDNA Synthesis kit (Bio-Rad). Gene expression was
assessed using a Bio-Rad CFX384 real time system using SensiMix SYBR (Meridian). The
samples were normalized to the house keeping gene human RPLP0. Primer sequences
used can be found in Supplementary Table S1.

2.7. Statistics

Statistical analysis was performed using GraphPad Prism 8. Each experiment was
performed 4 times, with CMs from 4 independent differentiations. Per experiment, each set
of 3 tissues (one well of a 12wp) was considered as technical replicates.

Differences between groups were assessed by two-way ANOVA plus Tukey’s post-hoc
test and for comparison within one medium by one-way ANOVA plus Tukey’s post-hoc
test. Results are displayed as mean ± SEM unless stated otherwise. Significance was
attributed to comparisons with values of p < 0.05 ¥; p < 0.01 †; p < 0.001 ‡; and p < 0.0001 #.

3. Results
3.1. Fabrication of the Platform

The EHT platform consisting of 12 individual PMMA-based holders was optimized
to fit perfectly into a standard 12-well culture plate (Figure 2F). Each holder contains four
alignment features (Figure 2A) that allowed for the successful assembling and aligning of
both the tissue mold (Figure 3A) and the PDMS-part into the holder. As a result, the six
cantilevers on the PDMS-part can settle into the tissue slot, enabling the proper formation
of the EHTs around them (Figure 3C). The disc on top of the cantilevers combined with the
black marks successfully supported the EHTs and enabled tracking of the position of the
cantilevers during repetitive cycles of contraction (Figure S3).

3.2. Maturation Medium Improves Tissue Formation and Induces an Increase in Contraction Force

In order to improve the current contractile output of EHTs, we made use of our
previously developed defined maturation medium (MM) containing T3, IGF-1, and dexam-
ethasone [16], and compared it to the standard EHT medium (DMEM) [17] and to our CM
differentiation medium (BPEL). Since the standard EHT medium includes horse serum, we
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supplemented the tissues in MM and BPEL media with 10% horse serum (+HS) as well. To
assess the variation of the tissue formation and functional analysis under these different
culture conditions across different hPSC lines, we used both hiPSC (LUMC0020iCTRL-06)
and hESC (HES3 NKX2.5eGFP/w) lines. Prior to tissue formation, CM differentiation was
evaluated after three days (D17) of conditioning the CM monolayers in the corresponding
media without HS (Figure 1B,C). While the CMs of each medium condition originated from
the same batch of differentiation, the average percentage of CMs in the population varied
substantially between media after the conditioning step. Consequently, EHTs from hiPSC-
CMs were formed with a percentage of CMs of 68 ± 6%, 79 ± 13%, and 85 ± 7% in BPEL,
DMEM, or MM, respectively (Figure S4A,B). Similarly, EHTs were made of hESC-CMs
with percentages of 73 ± 9%, 76 ± 6%, and 81 ± 7% in BPEL, DMEM, or MM, respectively
(Figure S4C,D). Once the tissues were made, the formation of the EHTs from hESC-CMs
and hiPSC-CMs over time showed that the first 5 days of cell culture are vital for the
success rate of tissue in formation over the next 20 days. The highest success rate for EHT
formation was achieved with hiPSCs in MM+HS (100%, 16 of 16 tissues), followed by
DMEM+HS with 80% (14 of 16 tissues) and BPEL+HS with only 56% (10 of 16 tissues).
Using hESC-CMs, the success formation of EHTs was, on average, lower than hiPSC-CMs,
although the highest success rate was found in BPEL+HS with 73% (11 of 15 tissues),
closely followed by MM+HS with 67% (10 of 15 tissues) and DMEM+HS with 53% (8 of
15 tissues; Figure 4A).

It has been shown that for optimal contractile output, remodeling and compaction of
tissue plays an important role [24]. In order to evaluate tissue remodeling during culture,
we next analyzed how the EHTs compacted over time by measuring the tissue area at each
timepoint. Since compaction is mostly determined within the first 5 days, analysis was
divided in two parts: the first stage of the compaction of tissues from day 0 to 5 (early-stage
compaction) and the second stage of additional relative compaction from day 5 onwards
(late-stage compaction). Both hESC-EHTs and hiPSC-EHTs compacted mostly in MM+HS,
reducing the surface area by 70–75% during early-stage compaction and making hiPSC-
EHTs significantly smaller than in other medium types (Figure 4B,C). Late-stage tissue
compaction was also most effective in MM+HS compared to BPEL+HS and DMEM+HS
conditions. It is worthy to note that hESC-EHTs showed the highest compaction in MM+HS
at day 20 (Figure 4D), whereas hiPSC-EHTs already reached maximum compaction at
day 11 (Figure 4E).

There is a general interest and preference to perform experiments in serum-free cul-
tures in order to avoid possible interference of serum-borne factors with drugs or other
agents and the interference or induction of disease-related mechanisms (such as cardiac
hypertrophy [15]). Based on our findings that EHTs cultured in MM+HS yielded the highest
success rate in EHT formation and displayed the best functional performance (see below),
we decided to evaluate whether EHT formation and functional aspects were maintained in
a completely defined serum-free MM (MM(SF)). Accordingly, at day 5, hiPSC-EHTs formed
with a success rate of 90% in MM(SF); after day 11, the success decreased to 70% (13 of
16 tissues). To a lesser extent, 60% of hESC-EHTs were successfully formed until day 5 and
thereafter the rate dropped to 40% (5 of 12 tissues; Figure 4A). Early-stage compaction of
hESC-EHTs in MM(SF) was comparable to the three media containing serum (Figure 4B).
In contrast, hiPSC-EHTs in MM(SF) compacted 5% less at the early stage compared to MM
and DMEM with serum (+HS; Figure 4C). Both ESC and hiPSC-EHTs in MM(SF) did not
further compact from day 5 onwards (Figure 4D,E).

Next, contraction of the cardiac tissues was visible at day 3 and first functional param-
eters were measured at day 5 in the different media. Additionally, these parameters were
measured at three other timepoints (on day 11, 15, and 20) to evaluate tissue performance
over time. The contractile force of hiPSC-EHTs was comparable between MM+HS and
MM(SF), and it was significantly higher than BPEL+HS and DMEM+HS at all timepoints.
On the other hand, hESC-EHTs in MM(SF) presented a significantly higher contraction
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force from day 5 to day 15 compared to BPEL+HS and DMEM+HS, while in MM+HS, this
significant increase was observed from day 11 to day 20 (Figure 4F,G).
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(D,E) Late-stage compaction measured by comparing the tissue area at day 11, 15, and 20 with its
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icant differences compared with MM+HS within the same timepoint unless otherwise indicated.
(F,G) Contractile force of EHTs in each medium in hESCs (F) and hiPSCs (G) at day 5, 11, 15, and 20. In
(F,G), p-values represented without significance line indicate significant differences versus BPEL+HS
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At every timepoint, the contraction force was higher in hiPSC-EHTs in MM+HS and
MM(SF) than in hESC-EHTs in all the media, except for MM(SF) at day 11.

Besides contraction force, the velocity of contraction and relaxation are important
parameters for assessing CM maturation [6,16,25,26] and were analyzed in both hESC and
hiPSC-EHTs. Both hESC and hiPSC-EHTs displayed significantly higher contraction and
relaxation velocities at different times in MM+HS and MM(SF) media when compared
to other media, with more consistent and prominent effects at all timepoints in the case
of hiPSC-EHTs (Figure S5). Accordingly, 10% and 90% of contraction times were lower
in MM+HS and MM(SF) with both hESC and hiPSC-EHTs (Figure S6A–D). In terms of
relaxation times, MM(SF) on hESC and hiPSC-EHTs showed lower times to achieve 10%
and 90% of relaxation compared to MM+HS (Figure S6E–H).
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3.3. EHTs in Maturation Medium Respond to Positive and Negative Inotropic Agents

A positive inotropic response to β-adrenergic agonists, such as isoproterenol, is an
important readout of maturity in CMs [12,27,28]. Administration of 3nM isoproterenol
led to a significant increase of contraction force as well as contraction and relaxation
velocities in MM+HS for both hESC and hiPSC-EHTs, and also in MM(SF) for hiPSC-EHTs
(Figure 5A–F). In a similar fashion, hESC-EHTs in MM(SF) presented a gain of force with the
β-adrenergic agonist but this was not significantly different than BPEL+HS and DMEM+HS
(Figure 5A). On the other hand, there was a significant gain of contraction and relaxation
velocities compared to those two media (Figure 5C,D).
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traction force of hESCs (A) and hiPSCs (B). EHTs in different media in response to isoproterenol
(3 nM). (C–F) Absolute gain of contraction (Gain C.velocity) and relaxation (Gain R.velocity) veloc-
ity of hESCs (C,D) and hiPSCs (E,F). EHTs in different media in response to isoproterenol (3 nM).
(G,H) Normalized force of contraction of hESCs (G) and hiPSCs (H). EHTs in different media in
response to increasing concentrations of nifedipine (0–10 µM). (A–F) Data shown as one-way ANOVA
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# = p < 0.0001 (N = 4, biological replicates from independent differentiations). HS, horse serum and
SF, serum free.



J. Pers. Med. 2022, 12, 214 11 of 16

To further assess the EHT response to another inotropic agent under the differ-
ent medium conditions, nifedipine was tested. Accordingly, a blockade of the L-type
Ca2+ current upon increasing concentrations of nifedipine (0–10 µM) resulted in a dose-
dependent reduction of contraction force in all four media in both hESC and hiPSC-EHTs
(Figures 5G,H and S7A,B), with a concomitant drop in contraction and relaxation veloci-
ties (Figure S7C–F). Notably, MM+HS-cultured EHTs were more sensitive to nifedipine
compared to BPEL+HS and DMEM+HS, as showed by a lower half-maximal inhibitory
concentration (Figure 5G,H). Most importantly, tissues in MM(SF) presented an even
higher sensitivity to nifedipine compared to all other counterparts with five to ten-folds
lower IC50.

3.4. Maturation Medium Improves Tissue Morphology and Gene Expression

Histological sections of EHTs were analyzed at the central area of the tissues at day 21
(Figure 6A). Immunohistochemical analysis revealed differences in the cardiomyocyte
morphology and distribution across the different culture media (Figure 6B). Tissues in both
serum-free MM(SF) and MM+HS revealed cardiomyocytes aligned to the longitudinal axis
of the tissues and contained better-organized striated sarcomeres. Notably, these organized
cardiomyocytes were mostly present on the outer layers of the tissues. In comparison, EHTs
in DMEM+HS also revealed cardiomyocytes aligned to the longitudinal axis of the tissues,
although without the presence of well-organized sarcomere structures. Finally, EHTs in
BPEL+HS revealed a network of randomly organized cardiomyocytes without the presence
of well-organized sarcomere structures (Figures 6A,B and S8). Expression of Connexin-43
was also more pronounced in EHTs in MM(HS) and MM(SF) media when compared to
BPEL(HS) and DMEM(HS), although the pattern was more variable (Figure S8E). In all
cases, no necrotic core was observed in the inner part of the tissues (Figure S8F).
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Figure 6. Morphological analysis of EHTs in four different media at day 21 of culture. (A) Brightfield
images of full EHTs in BPEL+HS, DMEM+HS, MM+HS, or MM(SF). Scale bar = 0.5 mm. (B) Confocal
images of whole-mount tissue immunostaining for cardiac troponin T (cTnT, red) counterstained
with DAPI (nuclei, blue). Scale bars, 25 µm. HS, horse serum and SF, serum-free.

Next to the functional and morphological observations of the EHTs in different culture
conditions, we also analyzed the expression of genes encoding for sarcomeric proteins
MYH7, TNNI3, and ACTN2, and for calcium-handling proteins SERCA2 and RYR2. We
observed an increased expression of these genes in EHTs cultured in MM+HS. A similar
trend was observed in MM(SF) also (Figure S9). Moreover, PGC1α expression levels were
also upregulated in both MM+HS and MM(SF). Taken together, these results suggest that
the higher functional performance and sarcomere organization observed in both MM+HS
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and MM(SF) also correlate to changes in the gene expression of the cardiomyocytes that
can be attributed to an enhanced state of maturation.

4. Discussion

Advanced human cardiac tissue models hold great promise in disease modeling and
drug screening, prospectively leading to new therapeutic approaches and personalized
medicine. In order to fulfill this potential, it is imperative to develop assays that allow for
robust and reproducible production as well as analysis of these cardiac tissues according to
good manufacturing practices [29].

In this study we have established a medium throughput platform for the production
and evaluation of 36 EHTs that fit in a standard 12-well plate. This platform has the
advantage of 12 modular, independent holders that can be used one at a time or in multiple
configurations, which is beneficial for addressing multiple biological questions at the same
time in independent wells. Furthermore, in each individual holder, three EHTs can be made,
accounting for technical replicates under the same experimental condition. The currently
available EHT models or platforms which use a comparable cylindrical flexible cantilever
in a similar format produce a lower number of EHTs (1 per custom-made bioreactor and
24 in 24-well plates) [17,18] or do not fit in a commercial culture plate. Instead, we used
245 × 103 cells per EHT, requiring approximately nine million cells for the production of
36 tissues (additional cells are needed in the process of tissue formation). Moreover, for
functional analysis, our EHT platform can be easily integrated with a common inverted
microscope setup and incubation chamber as opposed to the custom mounted camera
setup in the aforementioned conventional EHT platform [17].

We next applied our EHT platform to address two weaknesses of in vitro cardiac
3D models commonly reported by the field. First, for the generation of EHTs and in CM
culture in general, fetal bovine serum or HS is often used as a standard additive in media
to provide growth factors, nutrients, and hormones in order to improve CM viability and
contractile activity [14,29,30]. However, it is also known that serum affects cell growth,
differentiation, morphology, and the signaling of CMs, and the batch-to-batch variability of
serum may lead to biased outcomes [14]. Moreover, cardiac tissues engineered in vitro in
serum containing conditions cannot be readily used in the clinic because of the presence of
xenogenic additives. Furthermore, proteins in serum may bind to drugs and significantly
affect functional properties in drug-screening platforms [31]. During the formation of
EHTs, we observed a significant decrease in the cross-sectional area of the tissue from
day 0 to 5. According to previous findings, this initial area reduction is mainly related to
fibrin compaction and tissue remodeling, where matrix compaction is reported to occur
from day 3 up to one week after tissue formation [11,18,32]. After day 5, only EHTs in
serum-containing MM further continued to compact. Although the mechanism responsible
for late-stage compaction is currently unknown, growth factors and adhesion factors that
are enriched in serum may create more anchoring points and alter the ECM composition
of EHTs compared to serum-free conditions [33]. Moreover, serum-containing medium
enhances the growth and proliferation of other non-CM cell types [34], which are required
to compact into a functional tissue [13,18].

Second, in this study, we addressed the relative immature nature of the hPSC-CMs by
culturing the EHTs in a culture medium containing stimulants for maturation (Maturation
Medium). Many studies have shown that hPSC-CMs are immature and therefore not di-
rectly comparable to adult human CMs. It has been shown that T3 and insulin in the absence
of serum may play a role in the sarcomeric organization and preventing of CM apoptosis
in EHTs, respectively [35]. Accordingly, tissues in MM, both with and without serum,
presented a more homogeneous distribution of CMs and a better sarcomere organization
when compared to the other tissues, which is a hallmark for cardiomyocyte maturation.

Next to more organized tissue formation, increased contraction force is an important
functional hallmark of cardiac maturation. We previously observed a significant increase
in the contraction force of 2D single cell CM cultures from both hiPSC and hESC lines
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that were maintained in MM [36]. Although in our platform the CMs retained the auto-
pacing phenotype, which is a sign of relative immaturity, we observed that the force of
contraction levels in hiPSC-EHTs in MM+HS were 30% higher than the reported values
using standard EHT medium (DMEM) supplemented with serum [12]. Interestingly,
comparable to MM+HS, similar or slightly lower levels of force of contraction were achieved
in MM(SF). It is noteworthy that although the contraction forces of hESC-EHTs in the
different media were lower than those of hiPSC-EHTs, levels were consistently higher in
serum-free and serum-containing MM media. With respect to the lower contractile force
in hESC-EHTs, it has been reported that hESC-CMs derived from the same parental hESC
line as used in our current study were electrophysiologically less mature than hiPSC-CMs
when cultured under the same conditions [37]. These findings indicate that the increase in
maturation level through medium composition can be achieved regardless of the starting
maturation level of each hPSC line.

Another indicator of CM maturation is the positive inotropic response (increased force)
to the β-adrenoceptor agonist isoproterenol [27,38]. HESC and hiPSC-EHTs in MM+HS
showed a gain of force in response to isoproterenol. This response was also observed in
MM(SF) in hiPSC-EHTs. Accordingly, a gain in the contraction and relaxation velocity
was observed in MM+HS and MM(SF). Although these results are indicative of cardiac
maturation, these responses are still smaller compared to human heart tissue (difference
of 200%) [39], indicating that additional steps of maturation are required. Additionally,
EHTs also responded well to negative inotropy induced by the L-type Ca2+ channel agonist
nifedipine. Sensitivity to nifedipine was higher in both hESC and hiPSC-EHTs in MM
compared to the other media and closer to sensitivity values reported in human adult
primary cardiomyocytes [40]. Moreover, serum-free MM displayed a clear increase in
sensitivity to nifedipine compared to serum-containing MM, which supports the concept
that a serum-free platform for drug-screening would be beneficial.

In agreement with the increased force of contraction, gene expression analysis of the
EHTs in MM+HS and MM(SF) revealed an increased expression of genes encoding for the
contractile sarcomeric proteins ACTN2, MYH7, and TNNI3, which have been previously
related to cardiomyocyte maturation [6]. Moreover, the upregulation of PGC1α in EHTs in
these two media suggests an improvement in the cardiac tissue’s bioenergetics since this
gene has been identified as a major regulator of mitochondrial function [41]. In short, this
study demonstrates that EHTs could be formed with a higher degree of organization and
improved contractile performance by applying an improved cell culture medium, omitting
undefined serum components but supplementing CM maturation factors. Since EHTs
in MM+HS performed best, future improvements of culture medium could be made by
evaluating which factors in horse serum contribute to a better performance. The design
of the EHT platform enabled us to rapidly screen multiple culture medium conditions, a
trait that makes it well-suited to systematically study other maturation factors, such as the
effect of multicellularity in various ratios and both combinations and adaptations in energy
sources as already described [13,42–44], with contractile force as a major functional readout.
Improvements in developing robust and mature hiPSC-EHTs will not only lead to a better
understanding of the underlying mechanisms of cardiac maturation but will also serve as a
platform for studying contractile function in patient-specific diseases, which, in addition
to the cardiovascular field, can also be extended to the skeletal muscle field. Furthermore,
the medium-throughput level of this platform enables its use for drug screening. With the
technology and approach that we have used here to establish a serum-free EHT platform
for standardized functional analysis, it will be feasible to up-scale and miniaturize EHTs
and address these issues in follow-up studies, which will represent an important step
towards predictable disease modelling of cardiovascular disease, safety pharmacology, and
drug discovery.
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5. Conclusions

To conclude, we presented a modular platform for the production of 3D cardiac tissues
(EHTs) that fits into a commercial 12-well plate, providing three technical replicates per
well, with a total of 36 EHTs per plate. Moreover, this EHT platform easily integrates with a
common inverted microscope set up in combination with automatic analysis using optical
tracking, which provides force, velocity, and the time of contraction or relaxation as func-
tional readouts. We observed improvement in the formation and functional performance
(both contraction and relaxation parameters) of EHTs cultured in maturation medium, even
in the absence of serum. This EHT platform will facilitate and expedite the standardization
and validation of advanced human cardiac function in vitro, which will be beneficial for
cardiac disease modeling and drug discovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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time in different media; Figure S7: Response to negative inotropic agents in hESC and hiPSC EHTs;
Figure S8: Morphological analysis of EHTs; Figure S9: Relative gene expression of cardiac gen es for
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for RT-qPCR.
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