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Abstract

The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug

screening has increased, as they provide important insight into the genetic mechanisms,

cardiac toxicity or drug responses. Consequently, this has highlighted the need for a stan-

dardized, unbiased, robust and automatic way to analyze hallmark physiological features of

EHTs. In this study we described and validated a standalone application to analyze physio-

logical features of EHTs in an automatic, robust, and unbiased way, using low computational

time. The standalone application “EHT Analysis” contains two analysis modes (automatic

and manual) to analyzes the contractile properties and the contraction kinetics of EHTs from

high speed bright field videos. As output data, the graphs of displacement, contraction force

and contraction kinetics per file will be generated together with the raw data. Additionally, it

also generates a summary file containing all the data from the analyzed files, which facili-

tates and speeds up the post analysis. From our study we highlight the importance of ana-

lyzing the axial stress which is the force per surface area (μN/mm2). This allows to have a

readout overtime of tissue compaction, axial stress and leave the option to calculate at the

end point of an experiment the physiological cross-section area (PSCA). We demonstrated

the utility of this tool by analyzing contractile properties and compaction over time of EHTs

made out of a double reporter human pluripotent stem cell (hPSC) line (NKX2.5EGFP/

+-COUP-TFIImCherry/+) and different ratios of human adult cardiac fibroblasts (HCF). Our

standalone application “EHT Analysis” can be applied for different studies where the physio-

logical features of EHTs needs to be analyzed under the effect of a drug compound or in a

disease model.
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Introduction

Cardiovascular diseases (CVD) have been the leading cause of death and disability worldwide

and are one of the costliest chronic diseases [1]. CVD costs are expected to increase substan-

tially as the life expectancy increases. Innovative approaches are needed to bring new treat-

ments to the market more quickly and cost-effectively [2–4]. For this, cardiac models can be

used, such as 2D in vitro models or animal models. The former is often too simple and do not

accurately represent the efficacy and safety of drug compounds in humans. The responses seen

in animal models cannot always be directly related to the human situation. Therfore, these two

cardiac models face both short comings, which contributed to a high compounds failure rate

in clinical trials [5–7]. Instead, the use of in vitro 3D cardiac models, such as engineered heart

tissues (EHT) have shown the advantage to mimic in vivo organization, functionality and cell-

cell interaction, essential to resemble the human heart to study the pharmacodynamics and

pharmacokinetics during preclinical studies of drug development.

The contraction force is the main feature of the human heart that allows pumping blood

through the vasculature. The physiological performance of this contraction is crucial to assess

the heart function following treatment of drug compounds or when evaluating a disease phe-

notype [8–10]. The EHTs have shown to be a gold standard 3D in vitro model for mimicking

the contractility of the cardiac tissue by using human pluripotent stem cell-derived cardiomyo-

cytes (hPSC-CMs) combined with environmental stimulation (mechanical and electrical) [11–

15]. Cardiomyocytes (CMs) have the ability to organize into 3D myocardial structures when

suspended in an extracellular matrix (ECM) surrounding anchor points. These anchor points

create a mechanical restriction on the CMs that induce an enhancement of the structural, met-

abolic and physiological maturity of hPSC-CMs [16–18]. These EHT models are beeing used

by pharmaceutical companies and academia for drug discovery and disease modeling, as they

provide important insights into the genetic mechanisms, cardiac toxicity or drug responses

[19, 20]. With the increased use of EHT models, an unbiased, robust and automatic way to

analyze the contractile properties of the 3D cardiac tissues is crucial. Here we developed a soft-

ware tool that fullfills these criteria which enables analysis of the contractile properties and

contraction kinetics of EHTs. As output, an excel file containing the data, graphs of displace-

ment, contraction force and contraction kinetics per file are generated. Additionally, a sum-

mary file with all the data from the analyzed files is made, which facilitates and speeds up the

post analysis. We demonstrated the utility of this tool by analyzing contractile properties and

compaction over time of hPSC-EHTs with different ratios of human adult cardiac fibroblast

(HCF).

Materials & methods

HPSC culture and generation of hPSC cardiomyocytes

The experiments were done using a double fluorescent reporter hPSC line (NKX2.5EGFP/

+-COUP-TFIImCherry/+ generated in the human embryonic stem cell line HES3) [21]. HPSCs

were maintained as undifferentiated colonies in Essential 8 medium (Thermo Fisher,

A1517001) on vitronectin (Thermo Fisher, A31804)-coated 6-well plates. The differentiation

to hPSC-CMs was induced as described previously [22]. Briefly, one day before starting the dif-

ferentiation, hPSC were seeded at a density of 20-25x103 cells per cm2 on Matrigel (83 μg pro-

tein/mL, Corning, 354230) coated 6-well plates in Essential 8 medium. After 24 h (D0),

mesodermal differentiation was induced by addition of Activin-A (20–30 ng/mL, Miltenyi

130–115–010), BMP4 (20–30 ng/mL, R&D systems 314-BP/CF) and Wnt activator

CHIR99021 (1.5–2.25 μmol/L, Axon Medchem 1386) in BPEL medium [23]. At day 3, cells
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were refreshed with BPEL containing WNT inhibitor XAV939 (5 μmol/L, R&D Systems 3748)

and Matrigel (41.3 μg protein/mL). Cells were refreshed with BPEL on day 7 and 10 of differ-

entiation. Beating CMs at day 13 were metabolically selected with a lactate purification step of

4 days. This lactate purification medium consisted of our previously described maturation

medium (MM) [22] without glucose and with additional 5 mM of sodium DL-lactate solution

(60%, Sigma Aldrich, cat. no. L4263). At day 17, purified CMs were kept in the above described

lactate purification medium with additional 4.5 mM of glucose for three more days, when cells

were dissociated with TrypLE 10X (ThermoFisher, A1217702) and cryopreserved (Fig 1A).

Cells with at least 90% of green fluorescent protein (GFP) positive signal were used (S1 Fig).

Fibroblast culture

The Human adult cardiac fibroblast (HCF) were obtained from Promocell (C-12375) and they

were expanded according to the protocol [24]. Briefly, a T175 cell culture flask (Greiner) was

incubated (at 37˚C and 5% CO2) with 12 mL of FGM-3 (Promocell, C-23130) for 30 minutes.

The cryovial containing the HCF was thawed in a water bath at 37˚C. Then, the cells were

Fig 1. Experimental flow chart. (A) CMs differentiation steps from day 0 (D0), lactate purification at day 13 (D13)

and cryopreservation of CMs at day 20 (D20). (B) EHT formation from frozen CMs and different ratios of HCF (0, 1,

3, 5 and 10%) at day 0 (D0); Follow up by data collection of the tissue surface area from day 1 (D1) until day 10 (D10)

and contraction analysis carried at day 5 (D5) and day 10 (D10). hPSC = human embryonic stem cell;

CMs = Cardiomyocytes; MG = Matrigel; MM = Maturation medium; SF = Serum free; HCF = Human adult cardiac

fibroblast. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0266834.g001
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transferred from the cryovial to a cell culture flask containing the FGM-3 with an additional

18 ml of FGM-3. Subsequently, the culture flask was placed inside the incubator. Refreshments

were done every 48 hours. When the cells reached 70–90% confluency they were passaged to a

new flask; this process was repeated until reaching 11 passages. At the last passage, the HCF

were frozen at a final concentration of 150 x 103cells/ 0.5 mL in freezing medium. The freezing

medium consists of 50% KOSR (Thermo Fisher, 10828028), 40% FGM-3, 10% DMSO (Sigma-

Aldrich, D2650) and 0.5% Revitacell (Thermo Fisher, A2644501).

EHT formation

Cardiac EHTs were made as previously described from Ribeiro et al [25]. Briefly, three tissues

were made per well in a 12 well plate format with five different ratios of HCF: 0%, 1%, 3%, 5%

and 10%. First, both cell types (CMs and HCF) were thawed and resuspended in MM with 4.5

mM glucose and 5 mM sodium DL-lactate. After counting, both cell types were mixed by add-

ing different percentages of HCF (0%, 1%, 3%, 5% or 10%) to a fixed amount of CMs (8x105

cells for one well of the 12 well plate). Immediately after each group was centrifugated and the

pellet was resuspended to a final concentration of 16.3x106 cells/mL, 16.5x106 cells/mL,

16.8x106 cells/mL, 17x106 cells/mL and 18x106 cells/mL for each group, respectively. Subse-

quently, cells were mixed with an extracellular matrix (ECM) mixture consisting of 2X MM

medium, fibrinogen (final concentration 2 mg/mL, Sigma-Aldrich F8630), Matrigel (final con-

centration 1 mg/mL) and aprotinin (final concentration 2.5 μg/mL, Sigma-Aldrich, A1153).

Then, 0.6 U/mL of thrombin (Sigma, T7513) was added to the mix and quickly after mixing,

15 μl was used to make each one of the three tissues per well [25]. After 24 hours, the first

refreshment was done and after that, the refreshments were done every 2 or 3 days and after

contraction measurements.

Data collection

EHTs in the 12 well plate were maintained at 37˚C in 5% CO2 during image analysis. To assess

EHT compaction over time, images of each tissue were taken after 24 hours of tissue formation

for 10 days for automatic analysis of the surface area using our software (see below). Force of

contraction was measured after 5 (D5) and 10 (D10) days of the tissues being formed by using

a custom-made pacing device at 1 Hz (10 ms biphasic pulses, 4–5 V/cm) for 10 seconds. For all

measurements, we used a Nikon Ti2-E inverted microscope with a high-speed camera Prime

BSI from Photometrics at 100 fps with 2X magnification.

Software tool description

EHT Analysis is an easy-to-use software tool that analyzes the contractile properties and con-

traction kinetics of EHTs. By tracking the center of the anchor points (pillars) where the tissue

anchored to, EHT Analysis software extracts the displacement of the pillars as a consequence

of tissue contraction, which is then converted into force (S2 Fig). From this displacement, the

software calculates the maximum contraction and relaxation, as well as the contraction kinet-

ics that includes the time that takes to achieve 10% and 90% of contraction and relaxation. All

these parameters are important for assessing the patho-physiological properties of the tissues

in normal or diseased conditions or following treatment of drug compounds. The software is

run using parallel computing to decrease the time of the analysis.

User interface (UI), The current UI design has the following elements: an automatic and a

manual mode. The automatic mode facilitates the analysis of a large amount of data automati-

cally with just two clicks. If the user is particularly interested in one file and prefers either to
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select a specific region from the contraction waveform or to exclude a specific contraction pat-

tern for further analysis, the manual mode gives that versatility.

The automatic mode has two buttons, the first one allows to select the folder containing the

files that needs to be analyzed and it will automatically display the name of the folder selected

and the total number of files to be analyzed (Fig 2A). The second one is a “start” button that

will start the analysis of each file automatically, while displaying the name of the file analyzing

and as a visual confirmation the indicator will turn red during the analysis (Fig 2B). The man-

ual mode (supervised) has the same two buttons but in this case, during the analysis a pop-up

window with the preview graph of the displacement overtime there is the option to manually

select the maximums and minimums or continue with the automatic analysis (Fig 2C–2E).

When all the analyses are done the indicator will turn green as a visual sign. Additionally,

there is an “exit” button if you want to close the UI at any moment.

EHT Analysis workflow starts by choosing the main folder with the multiple files to be ana-

lyzed. Then, each file is analyzed sequentially. Inside of each file there is the bright-field tiff

stack of images and a txt file with metadata of the microscope settings. From the metadata, the

frame rate and the binning settings are extracted to calculate time and the size of a pixel to

micrometers (μm) (Fig 3A). Segmentation is started on the tiff stack, by having each tiff picture

divided in half to detect the center of the pillars. Furthermore, a pre-processing step is done to

enhance the quality of the images. Regions that have artifacts like debris or dead cells on top of

the pillars, that appear as black spots, are filled in with white pixels by taking into account pixel

connectivity of 8 pixels. The image is then segmented into two levels by a specific image

threshold that is defined using Otsu’s method [26] and converted to grayscale. The center of

the pillars is determined by using the maximally stable external regions (MSER) algorithm to

find the ellipses and centroids that fit into the regions. The MSER regions with low eccentricity

(circular) are selected and from those the one with the biggest area is selected. The same pro-

cess is done in the other half of the picture. Then, the distance between the centroids of the

ellipses is calculated creating the contraction waveform and if a centroid is not found an error

message is automatically generated. Later, the surface area of the tissue is calculated by extract-

ing the region of the tissue. This is done by segmenting the whole image into two levels by a

defined threshold (Otsu’s method [26]) and converting it into black and white image. To

Fig 2. User interface EHT analysis. (A) Overview of the software. (B) Automatic contraction analysis option. (C-E)

Manual contraction analysis per folder overview(C), selection of the analysis mode on preview contraction wave

(automatic or manual) (D) and manually selection of maximums and minimums (E).

https://doi.org/10.1371/journal.pone.0266834.g002
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extract the region of the tissue, the color of the image is inverted, making the region of the tis-

sue white and the background black. Then, the region of the pillars is filled with white pixels to

have a complete segmented tissue. The tissue area in pixels is calculated by adding all the pixels

inside the region that are found using the function regionprops and then converted to μm2.

The area of the pillars (0.4 mm2) is subtracted from the total area in order to obtain just the

area of the tissue. All these steps are done using the parallel computing toolbox of Matlab

(Fig 3B).

The contraction waveform is smoothened using a Savitzky-Golay digital filter to eliminate

any undesired noise before finding the maximums and minimums. The maximum threshold

is used to find the peaks, it is defined as 20% from the top and the minimum threshold as 15%

from the baseline. If there are no peaks detected, an error message is generated. Contraction

kinetics are calculated as the time that takes to achieve 10% and 90% of contraction and relaxa-

tion. The contractile force (F [N]) is calculated using the displacement of the centroids over

time (δ [s]), the length (L [m]) radius(R [m]), Young’s modulus(E [Pa]) and the position of the

tissue (a[m]) on the pillar; accordingly to the elastic beam bending equation [27] (Fig 3C).

F ¼
3pER4

2a2ð3L � aÞ
d

All the information is saved into an excel file and four graphs are plotted (maximum & min-

imum displacement, contraction kinetics, contraction force and contraction force per surface

area) per file. At the end of the analysis, an excel file with the average values of all the data is

saved as a summary of the results and if there were errors, a txt file with the names of the files

is generated (Fig 3D).

Statistics

Statistical analysis was performed on GraphPad Prism 8. Differences between the different

groups were assessed by two-way ANOVA plus Tukey’s post-Hoc test. Results are displayed as

means ± s.e.m unless stated otherwise. Significance was attributed to comparisons with values

of P<0.05 � P<0.01��; P<0.001���; P<0.0001����.

Fig 3. Flow chart representing the workflow of EHT analysis. (A) Automatic analysis of the required input data inside of a main

folder. (B) Tracking the center of the pillars and the surface area, using parallel computing. (C) Contraction waveform post-processing.

(D) Output data.

https://doi.org/10.1371/journal.pone.0266834.g003
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Results

Tracking algorithm

Initially, to highlight the pillars tip location and simplify the tracking technic, the transparent

PDMS tip of the pillars were painted using carbon black [25]. The carbon black allows to

achieve a high level of blackness and reduces the light that passes through the material, result-

ing in clear black circles in the image (Fig 4A). At the moment of recording the light was

increased until the point only the black dots of the pillars were visible, to increase the contrast

with the background and facilitate the tracking of the pillars (Fig 4B). The two black regions

were successfully detected and the center of each region was found using edge detection in

each tiff image of the stack (Fig 4B and 4C). The displacement of the pillars was calculated by

measuring the distance the center of the pillars displaced upon tissue contraction. The resting

tension of the EHTs, upon tissue relaxation, was calculated as the difference of pillar position

between the unloaded pillar (no tissue attached) and the loaded pillar (with tissue attached)

[28] (Fig 4D, blue wave). After removing the resting tension, the algorithm identified correctly

the peaks and periodicity of the contraction wave in an automated manner (Fig 4D, red wave).

However, not all the videos are recorded at the starting point of a contraction cycle or ended at

the end of it. Therefore, to calculate the force of contraction, contraction kinetics and the con-

traction time, a robust selection of the contractile motion was implemented to eliminate the

calculation of incomplete contraction cycles (Fig 4E). The force of contraction was calculated

taken into account the displacement of the pillars of the selected contraction cycles and the

Fig 4. Contraction analysis by tracking black dots. (A) Original bright field image of an EHT around pillars with a

black tip. (B) Edge detection of the black tip of the pillars from a bright field image. (C) Detection of the center of the

pillars black region. (D) Displacement of the pillars over time with resting tension (Blue) and after removing the initial

resting tension (Red). (E) Maximum and minimum detection of the contraction motion; complete contraction cycles

are with filled marks. (F) Graph of the contraction force with the maximum and minimum. (G) Graph of displacement

over time and also indication the moments to achieve 10% and 90% of contraction and relaxation.

https://doi.org/10.1371/journal.pone.0266834.g004
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elastic beam bending equation [27] (Fig 4F). Then, from those cycles, the 10% and 90% of con-

traction and relaxation time and the contraction kinetics were calculated (Fig 4G). Further-

more, by using parallel computing, the time required to process 700 frames at 1320 x 477 pixel

resolution decreases from 4 minutes on average to a maximum of 1.5 minutes. Therefore, the

computational time for analyzing one tiff stack was significantly decreased depending on the

number of available computing cores.

Removal of black dots to capture automated tissue imaging

It has been shown that the extracellular matrix (ECM) remodeling and compaction of tissues

are relevant for achieving a higher contractile performance [29, 30]. Thus, to include the for-

mation of the tissues in the automatic analysis, we modified the fabrication of the pillars by

eliminating the black paint on the tip and lowering the light intensity in order to record the tis-

sues in the bright field image (Fig 5A). The tracking algorithm was successfully adapted to

Fig 5. EHT contraction analysis on transparent pillars. (A) Original bright field image of an EHT around

transparent pillars. (B) Region detection of the tip of the pillars from a bright field image. (C) Detection of the regions

with low eccentricity. (D) Detection of the center of the pillars. (E) Contour of the EHT. (F) Displacement of the pillars

over time with resting tension (Blue) and after removing the initial resting tension (Red). (G) Maximum and

minimum detection of the contraction motion; complete contraction cycles are with filled marks. (H) Graph of the

contraction force with the maximum and minimum.(I) Graph of displacement over time with the time to achieve 10%

and 90% of contraction and relaxation. (J) Graph of force per surface area with maximum and minimum.

https://doi.org/10.1371/journal.pone.0266834.g005
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identify the region of the pillars (Fig 5B), select the ones with low eccentricity (circular), big-

gest area and detect the center of the pillars (Fig 5C, 5D and S2 Fig). Furthermore, the contour

of the tissue was accurately extracted from the bright field and the surface area was calculated

(Fig 5E). Using the same logic of the previously mentioned algorithm, the graphs of displace-

ment, contraction force and time of contraction over time were generated accordingly (Fig

5F–5I). Additionally, using the tissue surface area calculated from the segmented tissue, force

per surface area was plotted (Fig 5J).

Contractile performance of EHT using different ratios of human adult

cardiac fibroblast

There is a great interest to define the best ratio of human adult cardiac fibroblast (HCF) on

EHTs that enhances the contractile output in order to resemble in vivo situation. Therefore,

we have applied this image analysis software to study this biological question. We successfully

made EHTs from the hPSC line (NKX2.5EGFP/+-COUP-TFIImCherry/+) with different ratios of

HCF (0%, 1%, 2%, 3%, 5% and 10%), by using our previously developed platform [25]. First,

we evaluated the success rate of tissue formation over time, which is the homogenous forma-

tion of the 3D cardiac tissue around the pillars without any gap of cells in the middle (S3 Fig).

The highest success rate of tissue formation was achieved by using 3% (94.4%, 17 of 18 tissues)

and 10% (94.4%, 17 of 18 tissues) of HCF, followed by 1% (83.3%, 15 of 18 tissues), 5% (83.3%,

15 of 18 tissues) and 0% (72.2%, 13 of 18 tissues) (Fig 6A).

HCFs have shown to contribute to remodeling of the ECM and increase tissue compaction

[29]. Before assessing the tissue compaction over time, we first evaluated the accuracy of the

algorithm to segment and calculate the tissue area from the bright field images by comparing

with the tissue area measured manually using the image processing software package Image J.

During 10 days, on every day an image was taken and analyzed with both methods. In all cal-

culated and measured tissue areas, the area of the pillars was subtracted. We found that the rel-

ative error over the 10 days of tissue area measurements using the automatic algorithm, was on

average below 5% in all the conditions (Fig 6B). In terms of tissue compaction over time, the

first 5 days were the ones where the biggest change in compaction was observed in all the

cases. This is followed by a plateau phase after day 5 until day 10. Note that 1% and 3% of HCF

showed the highest compaction changes during the initial 5 days and in general 1% of HCF

showed the highest levels of tissue compaction over time (Fig 6C).

Next, we evaluated the accuracy of the algorithm to identify the center of the pillars from

the bright field images by comparing with the distance measured manually using Image J. We

used the same data set previously described for the relative surface area error. We found that

the relative error of tracking the center of the pillars using the automatic algorithm, was on

average below 1% in all the conditions (Fig 6D). Then, contractile properties of the EHTs with

the different HCF ratios were measured on day 5 and 10. At day 5, the EHTs with 3% HCF

showed a significantly higher contraction force compared to the other conditions except for

10% HCF, whereas at day 10 no significant differences in contraction force were observed in

any of the cases. (Fig 6E). Additionally, we compared the performance of EHT Analysis with

the software MUSCLEMOTION by analyzing 5 different bright field videos randomly selected

with both software (S4 Fig).

The absolute values of contraction force make it difficult to compare the results from differ-

ent research groups. Different platforms are used to make the EHTs and the differences herein

creates variability in the measured contraction force. To facilitate the comparison of contrac-

tile force, the physiological cross-section area (PCSA) has been used in multiple studies [31–

33]. However, this limits the throughput of analyzing multiple 3D cardiac tissues in an
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unbiased, fast manner and without the handling human error. Normally, to quantify the PCSA

of the tissues a histology process is required; which limits the continuous analysis of the tissue

over time. Instead, we analyzed the axial stress by dividing the contraction force per surface

area. We found that tissues with 3% HCF showed significantly higher force per surface area

compared to 0% and 1% HCF and tissue with 10% HCF compared to 0% HCF at day 5. While,

at day 10 tissues with 1% HCF which showed higher axial stress compared with 5% HCF (Fig

6F).

Other important contractile properties are the velocity of contraction and relaxation.

Which are automatically calculated by the algorithm. EHTs with 3% and 5% of HCF displayed

a significantly higher contraction velocity compared to EHTs with 0% HCF at day 5. While at

Fig 6. EHT comparison with different ratio of Human adult cardiac fibroblast (HCF). (A) Success rate of tissue

formation using different ratio of HCF. (B) Relative surface area error by comparing the tissue area measured manually

using Image J and using the stand alone application. (C) Relative tissue compaction by comparing the initial tissue area

at day 0 (10.7 mm2) with the tissue area over time with the different ratio of HCF. (D) Relative tracking error of the

pillar’s center by comparing the distance measured manually using Image J and using the stand alone application. (E)

Contractile force of EHTs with different ratios of HCF at day 5 and 10. (F) Contractile force of EHTs with different

ratios of HCF divided by the surface are of the tissue at day 5 and 10. In E-F, data shown as means, maxima and

minima; Two-way ANOVA plus Tukey’s test for comparisons among ratios of HCF; � = p<0.05; �� = p<0.01; ��� = p

<0.001; ���� = p<0.0001,(N = 3).

https://doi.org/10.1371/journal.pone.0266834.g006
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the same timepoint, only EHTs with 3% HCF showed higher relaxation velocity compared to

EHTs with 1% and 0% HCF. (Fig 7A and 7B). No significant differences were observed in the

time that takes to achieve 10% and 90% of contraction and relaxation (Fig 7C–7F).

Discussion

The increased use of 3D cardiac tissues with cylindrical pillars as anchor points as in vitro
model for disease modeling and drug screening [27, 31, 34, 35], has opened a need for a stan-

dardized, efficient computing and reliable way to analyze physiological properties of the car-

diac tissues.

In this study we have developed “EHT analysis”, a standalone application to analyze con-

tractile properties of EHTs. This application with an easy-to-use interface has the advantage to

automatically analyze multiple contraction motions of EHTs from high speed videos with low

computation time in an unbiased way. Furthermore, the generated output of EHT analysis,
facilitates the post-analysis by giving the results of all the contractile properties of each ana-

lyzed tissue in one excel file. This leads to an increase in productivity and a reduction of

human errors during the analysis. Additionally, the user is able to access a detailed analysis per

EHT with the data and graphs (displacement, contraction force, contraction kinetics and force

per surface area over time), and in the specific case where the software cannot analyze the

Fig 7. Contraction kinetics of EHTs with different ratio of human adult cardiac fibroblast (HCF). (A-B)

Contraction (A) and relaxation (B) velocity of EHTs using different ratio of HCF at day 5 and 10. (C-D) Time to reach

10% (C) and 90% (D) of contraction using different ratio of HCF at day 5 (D5) and day 10 (D10). (E-F) Time to reach

10% (C) and 90% (D) of relaxation using different ratio of HCF at day 5 (D5) and day 10 (D10). Data shown as means,

maxima and minima; Two-way ANOVA plus Tukey’s test for comparisons among ratios of HCF; � = p<0.05; �� = p

<0.01; ��� = p<0.001; ���� = p<0.0001, (N = 3).

https://doi.org/10.1371/journal.pone.0266834.g007
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contraction motion of the tissue, a txt file will be generated automatically pointing out the

name of the file, making it easy to find. Furthermore, it also has an option to do a supervised

analysis for a more controlled or specific case analysis. Here, it offers the possibility to decide

to analyze the contraction motion, making it a versatile tool for analyzing contractile proper-

ties of EHTs. The previous reported custom-made software developed by other researchers

analyzed contraction force using different tracking techniques. In the case of the EHT Tech-

nologies platform [36], they focused on the top and bottom of the tissue strip by using a cus-

tomized software package developed by a private company, which make it platform specific

and not easy to access. While Serra et al [27], used a similar approach by tracking the centroids

of the pillars, it is not clear how automated this analysis is and what variables besides contrac-

tion force and frequency are obtained as an output, which limits its use. Alternatively, fluores-

cent pillars have been used to track their position [37]. However, the accuracy of this method

depends on the correct labeling of the pillars and the comparison with the theoretical grid of

undeflected pillars. Any subtle variation in the initial distance of the pillars will introduce error

in the measurement. In addition, MUSCLEMOTION [38] uses the differences in pixel inten-

sity between a reference frame and the frame of interest for the assessment of the contraction.

Although this an effective approach, assessment is sensitive to background noise and the auto-

mated selection of the frame of reference. High background levels or the wrong selection of

the reference frame, affect the performance of the algorithm and introduce incorrect values as

we observed (S4A Fig). Therefore, analysis using MUSCLEMOTION usually require large

input by the user or training to analyze the files and may yield variability in output data. Con-

sequently, contractile analysis is time-consuming, which limits the analysis throughput and

comparison of data.

Previously reported force per PCSA has been used to compare the contractility perfor-

mance of 3D cardiac tissues among research groups and different EHTs platforms [39–44].

However, force per PCSA is a factor that reduced the throughput of analysis and is time-con-

suming for a big scale experiment due to the histology step that is required to measure the

PCSA of the tissues. With the EHT Analysis app we propose to analyse the axial stress, which is

the force per surface area. This allows having a readout over time of tissue compaction and

axial stress, without limiting analysis to an endpoint. In this way the PCSA of the tissue could

be measured and included in the analysis after the histology step is done.

Additionally, we next used the EHT Analysis app to analyse the changes over time of tissue

compaction and contractile properties of EHTs from hPSC-CMs with different ratios (0%, 1%,

3%, 5% and 10%) of HCF. We observed changes in the tissue compaction in the EHTs with

HCF during the first 5 days of culture, while tissues without HCF took longer to compact.

These findings correspond to previously reported influence of fibroblast in the remodeling

kinetics of the ECM [45, 46]. Overall, the tissues with 3% HCF showed high success rate of tis-

sue formation (94.4%), a highest level of tissue compaction and the higher contractile force

and contraction kinetics in just 5 days of culture, which is promising for short experiments.

Moreover, using 3% HCF is an alternative to move towards co-culture of different cell types in

EHTs with a high success of tissue formation.

We demonstrated the versatility and advantage of using the EHT analysis standalone appli-

cation to analyse hallmark physiological features of EHTs in an automatic, robust, unbiased

and with low computational time of high speed bright field videos of EHT contraction motion.

This makes it very useful and relevant for the analysis of big data sets result of high-throughput

experiments of drug testing and disease modelling. Furthermore, the automatic surface area

measurement is a valuable readout that can facilitate investigations like the effect of cardiac

fibrosis [47]. For a next step, we believe that the use of an open software platform will be

required to make the application more accessible.
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Conclusion

In this study, we developed a standalone application “EHT Analysis” to automatically analyze

hallmark physiological features of EHTs, formed around cylindrical anchor points, in a stan-

dardized, robust, unbiased and with low computational time. This app will be useful to

increase the speed of analysis and reduce human error in measurements, which will be benefi-

cial for drug discovery and disease modeling applications.

Supporting information

S1 Fig. Cardiomyocyte differentiation. Representative histogram plot of flow cytometry of

differentiated COUP-red (NKX2.5eGFP/+-COUP-TFIImCherry/+) CMs after lactate purification

at day 20. Cardiomyocytes are quantified with the percentage of NKX2.5eGFP+) positive cells.

Grey: negative control (NKX2.55Egfp-) negative cells), green: NKX2.5eGFP+) positive cells.

(TIF)

S2 Fig. EHT video. Example of tracking the center of the pillars of a EHT bright field video,

record with a 2x magnification.

(MP4)

S3 Fig. Tissue compaction over time. EHTs with different ratios of human adult cardiac

fibroblast at day 0 (D0),3 (D3), 5 (D5) and 10 (D10).

(TIF)

S4 Fig. Comparison between EHT analysis and MUSCLEMOTION. A-E Results of 5 differ-

ent brightfield videos of EHT contraction using EHT analysis and MUSCLEMOTION.

(JPG)
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